A Study of Polycrystalline Silicon Damage Features Based on Nanosecond Pulse Laser Irradiation with Different Wavelength Effects
نویسندگان
چکیده
Based on PVDF (piezoelectric sensing techniques), this paper attempts to study the propagation law of shock waves in brittle materials during the process of three-wavelength laser irradiation of polysilicon, and discusses the formation mechanism of thermal shock failure. The experimental results show that the vapor pressure effect and the plasma pressure effect in the process of pulsed laser irradiation lead to the splashing of high temperature and high density melt. With the decrease of the laser wavelength, the laser breakdown threshold decreases and the shock wave is weakened. Because of the pressure effect of the laser shock, the brittle fracture zone is at the edge of the irradiated area. The surface tension gradient and surface shear wave caused by the surface wave are the result of coherent coupling between optical and thermodynamics. The average propagation velocity of laser shock wave in polysilicon is 8.47 × 103 m/s, and the experiment has reached the conclusion that the laser shock wave pressure peak exponentially distributes attenuation in the polysilicon.
منابع مشابه
Theory analysis of wavelength dependence of laser-induced phase explosion of silicon
Wavelength dependence of laser ablation of silicon was investigated with nanosecond ultraviolet, visible, and infrared laser pulses in the irradiance range from 3 1010 to 1 1012 W /cm2. For 266 and 532 nm laser pulses, the depth of laser-produced crater shows a dramatic increase at a laser irradiance threshold of approximately 2 1010 and 4 1011 W /cm2 respectively, above which, large micron-siz...
متن کاملLaser safety importance in clinical laser applications
Introduction: By introducing of laser systems and their continuous development, a new chapter of laser systems applications in a variety fields including research and clinical science in addition to the therapeutic, diagnostic applications were available for medical professionals in various fields. Most lasers emit radiation with intrinsic probable risks where in laser-tissue i...
متن کاملNanosecond UV laser-induced fatigue effects in the bulk of synthetic fused silica: a multi-parameter study.
Multiple-pulse S-on-1 laser damage experiments were carried out in the bulk of synthetic fused silica at 355 nm and 266 nm. Two beam sizes were used for each wavelength and the pulse duration was 8 ns. The results showed a fatigue effect that is due to cumulative material modifications. The modifications have a long lifetime and the fatigue dynamics are independent of the used beam sizes but di...
متن کاملStudy of laser ablation using nano-second laser pulses
In this paper, the laser ablation process based on the irradiation of nanosecond pulsed lasers on a copper target surface in the presence of Helium gas is studied. The dynamical behaviors of the generated plasma in the helium gas and evaporated copper at the atmospheric pressure are examined using a laser pulse, laser wavelength of and intensity of 7×1010W/cm2. A one-dimensional thermal model ...
متن کاملPicosecond UV laser induced morphological, biochemical and biological changes in Bombyx mori
Background: In the light of various applications of UV laser in biological system, we have investigated the effect of picosecond UV laser radiation on silkworm Bombyx mori. Materials and Methods: The eggs of NB4D2 of different stages were exposed to pico second pulse laser at 355 nm from Nd:YAG laser for different durations. Results: Due to irradiation alterations in crescent larval body...
متن کامل